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Abstract

We describe a methodology for optimizing a threshold detection-based biosurveillance system.
The goal is to maximize the system-wide probability of detecting an “event of interest” against a
noisy background, subject to a constraint on the expected number of false signals. We use non-
linear programming to appropriately set detection thresholds taking into account the probability
of an event of interest occurring somewhere in the coverage area. Using this approach, pub-
lic health officials can “tune” their biosurveillance systems to optimally detect various threats,
thereby allowing practitioners to focus their public health surveillance activities. Given some
distributional assumptions, we derive a 1-dimensional optimization methodology that allows for
the efficient optimization of very large systems. We demonstrate that optimizing a syndromic
surveillance system can improve its performance by 20-40 percent.

KEYWORDS: Biosurveillance, syndromic surveillance, bioterrorism, public health, optimiza-
tion, Shewhart chart.

1 Introduction

Biosurveillance is the practice of monitoring populations – human, animal, and plant – for the

outbreak of disease. Often making use of existing health-related data, one of the principle objectives

of biosurveillance systems has been to give early warning of bioterrorist attacks or other emerging

health conditions (CDC 2004). The Centers for Disease Control and Prevention (CDC) as well

as many state and local health departments around the United States are developing and fielding

syndromic surveillance systems, one type of biosurveillance.
∗Naval Postgraduate School, Operations Research Department, Monterey, CA
†Naval Postgraduate School, Operations Research Department, Monterey, CA

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 JUN 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
Optimizing Biosurveillance Systems that Use Threshold-based Event
Detection Methods 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Operations Research 
Department,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

29 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



A syndrome is “A set of symptoms or conditions that occur together and suggest the presence of

a certain disease or an increased chance of developing the disease” (International Foundation For

Functional Gastrointestinal Disorders 2006). In the context of syndromic surveillance, a syndrome

is a set of non-specific pre-diagnosis medical and other information that may indicate the health

effects of a bioterrorism agent release or natural disease outbreak. See, for example, Syndrome

Definitions for Diseases Associated with Critical Bioterrorism-associated Agents (CDC 2003). The

data in syndromic surveillance systems may be clinically well-defined and linked to specific types

of outbreaks, such as groupings of ICD-9 codes from emergency room “chief complaint” data,

or only vaguely defined and perhaps only weakly linked to specific types of outbreaks, such as

over-the-counter sales of cough and cold medication or absenteeism rates.

Since its inception, one focus of syndromic surveillance has been on early event detection: gathering

and analyzing data in advance of diagnostic case confirmation to give early warning of a possible

outbreak. Such early event detection is not supposed to provide a definitive determination that

an outbreak is occurring. Rather, it is supposed to signal that an outbreak may be occurring,

indicating a need for further evidence or triggering an investigation by public health officials (i.e.,

the CDC or a local or state public health department). See Fricker (2008), Fricker (2007), and

Fricker & Rolka (2006) for more detailed exposition and discussion.

BioSense and EARS are two biosurveillance applications currently in use. The first is a true

system, in the sense that it is comprised of dedicated computer hardware and software that collect

and evaluate data routinely submitted from hospitals. The second is a set of software programs

that are available for implementation by any public health organization.

• BioSense was developed and is operated by the National Center for Public Health Informatics

of the CDC. It is intended to be a United States-wide electronic biosurveillance system. Begun

in 2003, BioSense initially used Department of Defense and Department of Veterans Affairs

outpatient data along with medical laboratory test results from a nationwide commercial

laboratory. In 2006, BioSense began incorporating data from civilian hospitals as well. The

primary objective of BioSense is to “expedite event recognition and response coordination

among federal, state, and local public health and health care organizations” (Fricker 2008,

CDC 2006a, Tokars 2006a,b). As of May 2008, BioSense was receiving data from 563 facilities

(CDC 2008).

• EARS is an acronym for Early Aberration Reporting System. Developed by the CDC, EARS

was designed to monitor for bioterrorism during large-scale events that often have little or no
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baseline data (i.e., as a short-term drop-in surveillance method) (CDC 2006b). For example,

the EARS system was used in the aftermath of Hurricane Katrina to monitor communicable

diseases in Louisiana, for syndromic surveillance at the 2001 Super Bowl and World Series,

as well as at the Democratic National Convention in 2000 (Toprani et al. 2006, Hutwagner

et al. 2003). Though developed as a drop-in surveillance method, EARS is now being used

on an on-going basis in many syndromic surveillance systems.

A characteristic of many syndromic surveillance systems is that the data collection locations (typ-

ically hospitals and clinics) are in fixed locations that may or may not correspond to a particular

threat of either natural disease or bioterrorism. Thus, in order to guard against any eventuality,

syndromic surveillance system designers and operators are inclined to enlist as many hospitals and

clinics, and to solicit as much data from them, as possible. However, as the sources and types of

data being monitored proliferate in a biosurveillance system, then so do the false positive signals

from the systems. Indeed, false positives have become an epidemic problem for some systems. As

one researcher (Shmueli 2006) said, “...most health monitors...learned to ignore alarms triggered

by their system. This is due to the excessive false alarm rate that is typical of most systems – there

is nearly an alarm every day!”

Our research provides a methodology which, if implemented, would allow public health officials

“tune” their biosurveillance systems to optimally detect various threats while explicitly accounting

for organizational resource constraints available for investigating and adjudicating signals. This

allows practitioners to focus their public health surveillance activities on locations or diseases that

pose the greatest threat at a particular point in time. Then, as the threat changes, using the same

hospitals and clinics, the system can subsequently be tuned to optimally detect other threats. With

this approach large biosurveillance systems are an asset.

The methodology assumes spatial independence of the data and temporal independence of the

signals. The former is achieved by monitoring the residuals from some sort of model to account for

and remove the systematic effects present in biosurveillance data. The assumption is that, while it

is likely that raw biosurveillance data will have spatial correlation, once the systematic components

of the data are removed the residuals will be independent. The latter is achieved by employing

detection algorithms that only depend on data from the current time period.

It is worth emphasizing that our focus is on how to optimally set threshold levels for detection

in an existing system, rather than how to design a new system. This is something of a unique

problem for syndromic surveillance systems, meaning that in many other types of sensor systems,
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one might design a system for a specific, unchanging threat or change the location of the sensors

to respond to a changing threat. But in syndromic surveillance systems, where we can think of

each hospital or clinic as a fixed biosurveillance “sensor” for a particular location or population,

the sensor locations cannot be changed. Part of the solution is to adjust the way the data from the

sensors are monitored.

1.1 Threshold Detection Methods

In this work, we define a threshold detection method as an algorithm that generates a binary output,

signal or no signal, given that some function of the input or inputs exceed a pre-defined threshold

level. In addition, for the methods we consider, inputs come in discrete time periods and the

decision to signal or not is based only on the most recent input or inputs. That is, the methods do

not use historical information in their signal determination; they only use the information obtained

at the current time period.

In the quality control literature, the Shewhart chart is such a threshold detection method. At each

time period a measurement is taken and plotted on a chart. If the measurement exceeds a pre-

defined threshold a signal is generated. However, if the measurement does not exceed the threshold

then the process is repeated at the next time period, and continues to be repeated until such time

as the threshold is exceeded. See Shewhart (1931) or Montgomery (2001) for additional detail. A

sonar detection algorithm based on signal excess is also an example of threshold detection. See

Washburn (2002) and references therein for a discussion.

Threshold detection methods are subject to errors, either signalling that an event of interest oc-

curred when it did not, or failing to signal when in fact the event of interest did occur. In classical

hypothesis testing, these errors are referred to as Type I and Type II errors, respectively. A Type I

error is a false signal and a Type II error is a missed detection. In threshold detection, setting the

threshold requires making a trade-off between the probability of false signals and the probability of

a missed detection. A receiver operating characteristic (or ROC) curve is a plot of the probability of

false signal versus probability of detection (one minus the probability of a missed detection) for all

possible threshold levels. See Washburn (2002, Chpt. 10) and the references therein for additional

discussion.
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1.2 Optimizing Sensor Systems

Optimizing a system of threshold detection-based sensors, in the sense of maximizing the probability

of detecting an event of interest somewhere in the region being monitored by the system, subject

to a constraint on the expected number of system-wide false signals, has not been done. Washburn

(2002, Chpt. 10.4) introduces the idea of optimizing the threshold for a single sensor, parameterizing

the problem in terms of the cost of a missed detection and the cost of a false signal, and seeks to

minimize the average cost “per look.” He concludes that “In practice, the consequences of the two

types of error are typically so disparate that it is difficult to measure c1 [cost of a missed detection]

and c2 [cost of a false signal] on a common scale. For this reason, the false alarm probability is

typically not formally optimized in practice.”

Kress et al. (2008) develop a methodology for optimizing the employment of non-reactive arial

sensors. In their problem the goal is to optimize a mobile sensor’s search path in order to identify

the location or locations of fixed targets with high probability. By dividing the search region into

a grid of cells, Kress et al. use a Bayesian updating methodology combined with an optimization

model that seeks to maximize the probability of target location subject to a constraint on the

number of looks by the sensors. Their work differs from ours in a number of important respects,

including that their sensors can have multiple looks for a target, there may be multiple targets

present, and the use of Bayesian updating to calculate the probability of a target being present in

a particular grid cell. In contrast, in our problem the sensors are fixed, they can only take one look

per period, and at most one “event of interest” can occur in any time period.

One active area of research is how to combine threshold rules for systems of sensors in order to

achieve high detection rates and low false positive rates compared to the rates for individual sensors.

For example, Zhu et al. (2007) consider a system of threshold detection sensors for which they

propose a centralized “threshold-OR fusion rule” for combining the individual sensor node decisions.

In this work Zhu et al. (2007) allow that multiple sensors may detect the presence of the target

with signals of varying strength and their objective is to combine the decisions made by individual

sensors to achieve system detection performance beyond a weighted average of individual sensors.

Their work builds upon the research of Chair & Varshney (1986) who, via a log-likelihood ratio

test, derived a fusion rule that combines the decisions from the n individual threshold detection

sensors while minimizing the overall probability of error.
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1.3 Paper Organization

The paper is organized as follows. In Section 2 we formulate the general problem and its solution via

an n-variable nonlinear program, illustrate the methodology on some simple examples, and then

derive an equivalent 1-dimensional optimization problem given some distributional assumptions.

In Section 3 we apply the methodology to our motivating problem, biosurveillance, using some

hypothetical syndromic surveillance systems. And, in Section 4 we summarize and discuss our

results, including directions for future research.

2 Problem Formulation

Consider a system of n sensors and let Xit denote the output from sensor i, i = 1, ..., n, at time t,

t = 1, 2, . . .. Sensor outputs occur at discrete time periods and each sensor has exactly one output

per time period.

Assume that when no event of interest is present anywhere in the system the Xit are independent

and identically distributed, Xit ∼ F0 for all i and all t. If an event of interest occurs at time τ ,

then Xiτ ∼ F1 for exactly one i. A signal is generated at time τ∗ when Xiτ∗ ≥ hi for one or more

i, where the thresholds hi can be set separately for each sensor.

Further assume that there is some distribution on the probability that an event of interest will

occur at sensor i’s location, pi, p = {p1, p2, . . . , pn}, where
∑

i pi = 1. Note that p is a conditional

probability: it is the probability an event occurs in sensor i’s location given that an event occurs

somewhere in the system.

The goal is to choose thresholds that maximize the probability of detecting the event of interest,

given one occurs somewhere in the region according to p, subject to a constraint on the conditional

expected number of system-wide false signals per time period.

For sensor i at time t, the probability of a true signal is

IP(signal|event of interest occurs at sensor i’s location) =
∫ ∞

z=hi

f1(z)dz = 1− F1(hi) = δi, (1)

and the probability of a false signal at sensor i is

IP(signal|no event of interest at sensor i’s location) =
∫ ∞

z=hi

f0(z)dz = 1− F0(hi) = αi. (2)

Thus, given that an event occurs in a particular time period, the probability the system detects
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the event is
∑n

i=1 δipi. Further, given that no event occurs, the expected number of false signals in

a particular time period is
∑n

i=1 αi.

This latter quantity deserves further explanation. The
∑n

i=1 αi is the expected number of false

signals given that no event occurs anywhere in the system. As such, it is a measure of the cost of

operating the system for an event-free time period.

Define h = {h1, . . . , hn}. Then we can pose the problem as the following nonlinear program (NLP),

max
h

∑n
i=1[1− F1(hi)]pi (3)

s.t.
∑n

i=1[1− F0(hi)] ≤ κ,

where κ is the limit on the average number of false signals per period of time. We will use the

shorthand notation Pd(h) for the objective function, sometimes suppressing the dependency on the

vector of thresholds h.

Note that in this formulation of the problem we are maximizing the probability of detecting a

single event that occurs somewhere in the system. This is a conservative detection probability,

in the sense that if multiple events occur simultaneously, or if a single event is so large that it is

detected by multiple sensors, then the actual probability of detection will be greater than Pd(h).

Also note that within the NLP formulation, additional constraints can be added, depending on the

requirements of the particular system or problem. For example, a constraint specifying a lower

bound on the conditional probability of detection for sensor i, δ′i, in the form of an upper bound

on the threshold for sensor i, could be added: hi ≤ F−1
1 (1 − δ′i). Or a constraint specifying an

upper bound on the probability of a false signal for sensor i, α′i, in the form of a lower bound on

the threshold for sensor i, could be added: hi ≥ F−1
0 (1− α′i).

2.1 The Biosurveillance Problem

Consider a biosurveillance system of n hospitals, each located in a separate geographic region,

and each feeding data on a particular syndrome into a syndromic surveillance system. Within the

syndromic surveillance system each stream of data from each hospital is monitored with a Shewhart

chart. Hence, we can think of each hospital-Shewhart chart combination as a biosurveillance

threshold detection-based “sensor.”

Syndromic surveillance data is generally autocorrelated, with various trends and other systematic

components that correspond to day-of-the-week, seasonal, and other effects. We assume that such
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systematic components of the data can be appropriately modeled and thus accounted for and

removed from the data. See, for example, Fricker et al. (2008a) and Fricker et al. (2008b) where

adaptive regression was used to remove the systematic effects from syndromic surveillance data.

We then assume that the Shewhart charts are used to monitor the standardized residuals from

such a model and that the residuals can be assumed to be independently distributed according to

a standard normal distribution. Finally, we assume that a disease outbreak will manifest as a step

increase in the mean of the residual distribution.

Thus, based on these assumptions, we have that:

• There are n independent “sensors,” each corresponding to a hospital in a separate geographic

region, each using a threshold detection algorithm (Shewhart chart) to monitor for a disease

outbreak or bioterrorism attack.

• An attack in any region will manifest itself in the same way at each hospital, at least in

terms of the standardized residuals being monitored. So Xi ∼ F0 = N(0, 1) when there is no

bioterrorism attack and Xj ∼ F1 = N(γ, 1) when an attack occurs in the region served by

hospital j.

• Therefore, for sensor i with threshold hi the probability of a false signal is

IP(signal|no attack in region i) =
∫ ∞

x=hi

f0(x)dx = 1− Φ(hi),

where Φ(hi) denotes the cdf for the standard normal evaluated at hi, and the probability of

a true signal is

IP(signal|attack in region i) =
∫ ∞

x=hi

f1(x)dx =
∫ ∞

x=hi−γ
f0(x)dx = 1− Φ(hi − γ).

So, given the above assumptions, the general NLP of Equation (3) can be expressed as

min
h

n∑

i=1

Φ(hi − γ)pi (4)

s.t.
n∑

i=1

Φ(hi) > n− κ,

where pi is the probability of attack in region i (which we have yet to specify).

2.2 Optimizing Thresholds

Given an appropriate choice of κ in (3) or (4), the relevant question is how to set the various

thresholds, h1, . . . , hn. In general there is no simple analytical solution, since it depends on F0 and
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F1. For example, consider a system of just two sensors in which the event of interest is equally

likely to occur at either sensor’s location. In such a case, one might assume that the strategy that

maximizes the probability of detecting the event is the one that sets equal thresholds on the two

sensors. Yet, this is not necessarily so.

To illustrate, for this simple system we have p = {1/2, 1/2} and, if we set the thresholds equally

so that h1 = h2 = h,

Pd =
2∑

i=1

1
2
[1− F1(h)] = 1− F1(h).

Assuming the maximum probability of detection occurs on the constraint boundary (so that the

constraint can be expressed as an equality), we also have

2∑

i=1

αi =
2∑

i=1

κ/2 = κ.

Now, choose some ε, 0 < ε < κ/2, and define α′1 = κ/2− ε and α′2 = κ/2 + ε, so that α′1 + α′2 = κ

still. Then, assuming F0 is continuous, h′2 = F−1
0 (1− α′2) > h > h′1 = F−1

0 (1− α′1) and

P ′
d =

2∑

i=1

1
2
[1− F1(h′i)] = 1− F1(h′1) + F1(h′2)

2
.

The result is that whether Pd > P ′
d, Pd = P ′

d, or Pd < P ′
d depends on the shapes of the distribution

functions F0 and F1 between h′1 and h′2. In particular, if F1 is convex between h′1 and h′2 then

Pd > P ′
d, and conversely, if F1 is concave between h′1 and h′2 then Pd < P ′

d.

The point is that it is not obvious how one should best choose the thresholds, even in such a simple

case as this with only two sensors and equal probability of attack at each sensor.

2.2.1 Some Illustrative Examples

Again, consider a system with only two sensors so that we can graph the objective function and

the feasible region. For example, Figure 1 shows the plot of an objective function for a two-sensor

system with F0 = N(0, 1), F1 = N(1, 1) and p = {1/2, 1/2}. We can observe a number of features

of the objective function for this simple problem.

First, it is clear that the function is increasing as either h1 or h2 (or both) decrease. Thus, without

the constraint, the optimal solution is simply to set h1 = h2 = −∞. Of course, in practice these

are useless thresholds since at such settings the sensors will signal at every time period.
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Figure 1: Plot of an objective function for n = 2 with F0 = N(0, 1), F1 = N(1, 1) and p =
{1/2, 1/2}.

Second, there are relatively flat regions of the objective function corresponding to the tails of the

F1 distribution. In these regions the objective function will be relatively insensitive to changes in

the thresholds. This suggests that additional constraints can be included in the NLP restricting the

thresholds to be within some reasonable domain of F1 that contains most of the dynamic range of

the cumulative probability distribution. Such constraints may be useful for bounding the problem

in order to facilitate convergence in an optimization package.

Figure 2 shows a view of the feasible region of the objective function for the constraint α1+α2 ≤ 0.1,

where the vertical curved plane shows the boundary where α1+α2 = 0.1. Looking at the intersection

of the objective function and the vertical plane, it is visually clear that an optimal solution exists. In

fact, the objective function is maximized at h1 = h2 = 1.645. As we will see in the next subsection,

it is not an accident that the optimal solution occurs on the boundary of the feasible region.

Now consider a system of 10 hospitals, as depicted in Table 1. In this system, the event of interest is

much more likely to occur at one hospital’s location (hospital 1). In fact p1 is an order of magnitude

greater than the probability at the next most likely hospital’s location. Assuming F0 = N(0, 1) and

F1 = N(1, 1), the column labeled “Common Threshold #1” shows that the system would achieve a

probability of detection of Pd = 0.117 and an expected false signal rate of 0.143 signals per period
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Figure 2: Plot showing the feasible region of the objective function in Figure 1, where the vertical
curved plane is the boundary of the constraint α1 + α2 ≤ 0.1. (The feasible region is in the
foreground.)

using a common threshold of 2.189 for all hospitals. However, by optimizing the thresholds, the

“Optimal Threshold” column shows that a probability of detection of Pd = 0.378 can be achieved

for the same expected false signal rate. This is achieved by lowering the thresholds (equivalently,

increasing the probability of detecting an attack should one occur) in those locations more likely

to experience an event of interest while raising the thresholds in those locations less likely to have

an event of interest. Finally, the column labeled “Common Threshold #2” shows that to achieve

the same Pd = 0.378 with a common threshold the system would produce an expected number of

false signals of almost one per period.

For a small system, with F0 and F1 normal distribution functions, it is a simple matter to express

the NLP in an Excel spreadsheet using the NORMDIST function and subsequently solve it using

the Solver. For this example, we used the Solver in Excel 2003 to find the optimal thresholds,

which ran quickly (less than a few seconds) and reliably found the optimal solution. (Within

the Solver, we used the Newton search method with Precision= 1x10−7, Tolerance= 5x10−6, and

Convergence= 1x10−7.) We verified the Excel solutions in Mathematica 5.0 (using the NMaximize

function) and also in GAMS using the MINOS solver.
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Table 1: An illustrative ten-hospital system with a specific p vector. The “Optimal Threshold”
column shows that Pd = 0.378 can be achieved with a constraint on the expected number of false
signals of one per every seven periods. The other two columns show the common thresholds that
either matches the expected number of false signals at the cost of a lower Pd or that achieves the
optimal Pd at the expense of increased false signals.

Common Optimal Common
Hospital i pi Threshold #1 Threshold (hi) Threshold #2

1 0.797 2.189 1.068 1.310
2 0.064 2.189 3.602 1.310
3 0.056 2.189 3.732 1.310
4 0.048 2.189 3.915 1.310
5 0.013 2.189 4.656 1.310
6 0.006 2.189 4.736 1.310
7 0.006 2.189 4.736 1.310
8 0.005 2.189 4.755 1.310
9 0.003 2.189 4.773 1.310
10 0.002 2.189 4.791 1.310

Pd 0.117 0.378 0.378∑
αi 0.143 0.143 0.951

However, it is important to note that the Solver is limited to 200 adjustable cells (http://support.

microsoft.com/kb/75714), which puts an upper bound on the number of hospitals (generically, sen-

sors) that can be optimized using this approach. For larger systems one might consider the Excel

Premium Solver, which can be used for up to 500 adjustable cells (www.solver.com/xlsplatform.htm),

but in a test with 400 hospitals the Premium Solver did not find an optimal solution after 12 hours

of run-time on a fast PC. Mathematica had an even more difficult time, failing to converge on

smaller systems.

The fundamental problem is that every additional sensor adds a variable to the NLP. As the

dimensionality of the problem grows, more specialized optimization software such as the MINOS

solver in GAMS may suffice, though very large systems will likely exceed the capacity of even these

programs to solve via brute force. This suggests a need for an alternative solution methodology

that reduces the dimensionality of the problem.
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2.2.2 Reducing the Dimensionality of the Problem

Even though it is easy to show that under some relatively mild conditions the objective function

in (3) is strongly quasiconvex over the constraint region, because this is a maximization problem

a globally-optimal solution is not guaranteed. However, we can derive some useful theoretical

properties of the constraint, particularly that the solution lies on the boundary of the constraint.

Then, using this fact, and further assuming some distributional properties for F0 and F1, we can

simplify this from an n-variable optimization problem to a 1-variable optimization problem with a

guaranteed optimal solution.

We begin with a simple lemma that specifies when the NLP is unconstrained.

Lemma 1 The NLP is unconstrained if κ ≥ n.

Proof. We first note that αi is simply the probability of a Type I error (i.e., a false signal) for

sensor i. Thus, the constraint in (3) can be re-written as

n∑

i=1

F0(hi) > n− κ.

Since 0 ≤ F0(hi) ≤ 1 for all hi ∈ IR, the above inequality must be trivially true whenever κ ≥ n. 2

What Lemma 1 says, unsurprisingly, is that the expected number of false signals must be less than

the number of sensors for the constraint to be relevant. If κ ≥ n the maximization problem then

becomes trivial: set hi = −∞ for all i and Pd =
∑n

i=1 pi = 1. In practice what this means is that

each sensor produces an signal at every period and thus one is guaranteed to “detect” the event of

interest. This is equivalent to a 100 percent inspection scheme in which the sensors are irrelevant.

Of course, in an actual biosurveillance system application, the constraint on the expected number

of false signals will of necessity be much smaller than the number of hospitals. Signals consume

resources as they must be investigated to determine whether an event of interest actually occurred,

and a system with a high expected number of false signals unnecessarily consumes a large amount

of resources.

Theorem 1 The optimal solution to the NLP in (3) lies on the boundary of the constraint.
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Proof. Define S = {h :
∑n

i=1 αi ≤ κ}, and assume that there exists an optimal solution Pd(h∗) for

some h∗ = {h∗1, . . . , h∗n} such that
∑n

i=1[1− F0(h∗i )] < κ. Since Pd(h∗) is an optimal solution, then

for any other h ∈ S
n∑

i=1

[1− F1(hi)]pi ≤ Pd(h∗).

But since
∑n

i=1 αi < κ there exists some ε > 0 and some αj , j = {1, 2, . . . , n}, so that α′j = αj + ε

and
∑

i6=j αi+α′j ≤ κ. For any such α′j there must exist some h′j = F−1
0 (1−α′j) so that 1−F1(h′j) ≥

1 − F1(hj). Therefore, Pd(h∗) is either not the optimal solution or an equivalent solution can be

found closer to the boundary. This procedure can be repeated indefinitely until a solution is found

for an h on the boundary of S. 2

Now, assuming F0 is a standard normal distribution and the event of interest manifests itself as a

shift in the mean of that distribution, the next lemma shows that the n-dimensional optimization

problem from (3) can be re-expressed as a one-dimensional optimization problem. These assump-

tions follow from the biosurveillance problem described in Section 2.1.

Theorem 2 If F0 = N(0, 1) and F1 = N(γ, 1), γ > 0, as in (4), then the optimization problem

reduces to finding µ to satisfy
n∑

i=1

Φ
(

µ− 1
γ

ln(pi)
)

= n− κ, (5)

and the optimal solution is hi = µ− 1
γ ln(pi).

Proof. From Theorem 1 we know that the optimal solution lies on the boundary of the constraint,

so we can express the constraint in Equation (4) as an equality. The result then follows from

reformulating the constrained minimization problem in Equation (4) as the following unconstrained

problem:

min
h

f = Φ

(
Φ−1

[
n− κ−

n∑

i=2

Φ(hi)

]
− γ

)
p1 +

n∑

i=2

Φ(hi − γ)pi. (6)

The partial differential equations with respect to each of the hi, for i = 2, 3, . . . , n, are

∂f

∂hi
=

exp
(
−h2

i +γ2

2

) (
pi exp [hiγ]− p1 exp

[√
2γErf−1

{
n− 2κ−∑n

i=2 Erf
[

hi√
2

]}])

√
2π

, (7)

where Erf(z/
√

2) = 2√
π

∫ z
0 exp(−t2)dt and Erf−1(Erf(z)) = z.

Now, (7) can be equal to zero only if

pi exp [hiγ] = p1 exp

(√
2γErf−1

{
n− 2κ−

n∑

i=2

Erf
[

hi√
2

]})
.
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Simplifying gives

Erf

[
hi + 1

γ (ln(pi)− ln(p1))√
2

]
= n− 2κ−

n∑

i=2

Erf
[

hi√
2

]
.

Since Erf(z/
√

2) = 2Φ(z)− 1, after some algebra we have that

Φ
(

hi +
1
γ

ln(pi)− 1
γ

ln(p1)
)

+
n∑

i=2

Φ(hi) = n− κ,

and substituting hi = µ− 1
γ ln(pi) gives the desired result. 2

One way to think about the one-dimensional optimization in (5) is in terms of finding µ such that

the sum of the probabilities that each of n normally distributed random variables (all with the same

mean but possibly different variances) is greater than some constant equals n−κ. Specifically, find

µ such that
n∑

i=1

IP
(

Xi >
1
γ

)
= n− κ, (8)

where Xi ∼ N
(
µ, [ln(pi)]

2
)
.

Given the continuity of the normal distribution, (8) makes it clear that an optimal solution is

guaranteed to exist. Furthermore, it is a relatively simple problem to solve for µ by starting with

a large value and gradually decreasing it until the sum of one minus each cdf evaluated at 1/γ in

(8) equals n− κ.

3 Syndromic Surveillance Applications

To illustrate the methodology, in this section we apply it to two hypothetical syndromic surveillance

systems.

3.1 Hypothetical Example #1: The 200 Largest US Cities

Based on the assumptions described in Section 2.1, consider a hypothetical syndromic surveillance

system for the 200 largest cities in the United States. Assume the probability of attack or outbreak

in city j, pj , is proportional to the population in the city. Of course, the probability of attack could

be a function of any number of factors, but for purposes of this example define

pj =
mj∑
i mi

=
mj

M
,
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Figure 3: Bubble chart of the 200 largest cities in the United States (Honolulu, Hawaii and An-
chorage, Alaska not shown). The bubbles are centered on the cities and their size denotes relative
population size.

where mj is the population of city j.

Per the U.S. Census Bureau population estimates for July 1, 2006 (www.census.gov/popest/cities/

SUB-EST2006.html), New York was the largest city with just over 8.2 million people, followed by

Los Angeles with just under 4 million, Chicago with just under 3 million, and Houston with just

over 2 million. The 200th largest city was West Valley City, Utah with a population of just under

120,000. For a total population of the 200 cities of almost 75 million, our assumption that the

probability of attack is simply a function of population size means that the estimated probability

of attack for New York is 0.11, Los Angeles is 0.05, Chicago is 0.04, and Houston is 0.03. At

the other extreme, West Valley City is 0.002. Figure 3 depicts the data for the 198 cities in the

continental United States (Honolulu, Hawaii and Anchorage, Alaska, also in the 200 largest cities,

are not shown) using bubbles centered on the cities, where the area of the bubble corresponds to

the estimated probability of attack.
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Optimizing the system, assuming F0 = N(0, 1), F1 = N(2, 1), and a maximum expected number

of false signals of four per period, the system has a probability of detection of Pd = 0.583. This is

achieved with thresholds ranging from 0.47 for New York, 0.85 for Los Angeles, 1.00 for Chicago,

and 1.14 for Houston, to 2.59 for West City Valley, Utah. If one were to have used a common

threshold for all the cities of h = 2.054, which achieves an equivalent expected number of false

signals, the probability of detection would decrease 18 percent to Pd = 0.478. Conversely, setting

a common threshold of h = 1.79 to achieve a Pd = 0.583 results in a 59 percent increase in the

expected number of false signals to 7.35 per period.

Of course, the choice of four expected false signals per period was made purely for illustrative

purposes and assumes that the organization operating the biosurveillance system has the resources

and desire to investigate and adjudicate that many signals (on average) per observation period.

Figure 4 shows the trade-off between the probability of detection and the expected number of false

signals in this scenario. If the organization has additional resources, the constraint on the expected

number of false signals can be relaxed and will allow for an increased probability of detection. On

the other hand, if the organization is resource constrained, the constraint can be tightened. This

will result in a decrease in the probability of detection, but at least all signals will be investigated.

After all, an uninvestigated signal is equivalent to no signal.

Now, one can easily imagine that operators of a biosurveillance system might want to adjust the

system’s sensitivity to account for some new intelligence or for other reasons. One way to do this is

to adjust p to reflect the most recent intelligence about the likelihood of each city being attacked.

Another possibility is to introduce additional constraints into the NLP to, for example, ensure that

the probability of detection given an attack for some city or cities is sufficiently large.

For example, consider the 200 cities in the previous example, where it is desired that the probability

of detection given attack for New York and Washington, D.C. be at least 90 percent. To achieve

this requires the addition of two constraints to the NLP in (4):

hNY ≤ 2 + Φ−1(0.9)

hDC ≤ 2 + Φ−1(0.9)

The constraints require that the thresholds for New York and Washington be no larger than 0.72.

Re-optimizing results in a New York threshold of 0.5 and a Washington threshold of 0.72. For

the other cities, new thresholds ranged from 0.87 for Los Angeles, 1.03 for Chicago, and 1.17 for

Houston, to 2.61 for West City Valley, Utah. The overall probability of detection decreases slightly
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Figure 4: The trade-off between the expected number of false signals and the probability of detection
for the optimal thresholds for Example #1. For κ = 4 the optimal thresholds give Pd = 0.583.
Increasing κ increases the probability of detection, but with decreasing returns.

to Pd = 0.578.

3.2 Hypothetical Example #2: Monitoring 3,141 US Counties

In Example #1, one might take exception to only monitoring the 200 largest cities. The implicit

assumption is that there is zero probability of an attack outside of these cities. One alternative

would be to field a biosurveillance system designed to monitor all 3,141 counties in the United

States. For the purposes of illustration, as with Example #1, we use the proportion of the total

population in a county as a surrogate for the probability that county is attacked.

Per the U.S. Census Bureau county population estimates for 2006 (www.census.gov/popest/counties/

files/CO-EST2006-ALLDATA.csv, “popestimate2006”), Los Angeles was the largest county with

just under 10 million people, followed by Cook county with just under 5.3 million, and Harris county

with just under 4 million. The smallest county was Loving county, Texas with a population of 60.

For a total United States population in 2006 of 299.4 million, the estimated probability of attack

ranges from Los Angeles county at 3.3 percent to Loving county at 4 one hundred thousandths of

a percent.
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Figure 5: Plot of the optimal thresholds versus probability of attack for Example #2. The optimized
thresholds focus surveillance on those locations with higher probability of attack.

If we assume as before that F0 = N(0, 1), F1 = N(2, 1), and a maximum on the expected number

of false signals of four per period, the system has a probability of detection of Pd = 0.333. This is

achieved with thresholds ranging from 0.91 for Los Angeles county, 1.23 for Cook county, and 1.38

for Harris county, to 6.92 for Loving county. Figure 5 shows a plot of the optimal thresholds versus

the probability of attack and Figure 6 is a map showing the probability of attack and thresholds

by county.

The cost for increasing the number of regions being monitored from 200 to 3,141 is about a 43

percent (25 percentage point) decrease in the probability of detecting an attack that manifests

itself as a two standard deviation increase in the mean of the residuals. The benefit is an increase

in the area being monitored. Of course, this is something of an apples-to-oranges comparison

since in the 200-cities example the probability of detecting an attack is conditional on the attack

occurring within that region. Thus, there are large areas of the country for which an attack could

not be detected at all. In contrast, the county-level system has some power to detect an attack

anywhere in the United States, but this comes at the expense of the power to detect an attack

within the 200-cities region.
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In terms of the county-level model, it is worth noting that while those counties with very low

probabilities of attack have such high thresholds that they will be virtually unable to detect a

moderately-sized outbreak/attack, these counties are being monitored at a level consistent with

their risk of attack. That is, the optimization has made the necessary trade-off of probability of

detection versus the likelihood of false signals in order to maximize the probability of detecting an

attack somewhere in the country within a manageable false signal rate.

Now, consider system performance if one were to have used a common threshold for all the counties

of h = 3.018, which achieves the same expected number of false signals (four per period), the

probability of detection would be cut more than in half to Pd = 0.154. This decrease in sensitivity

occurs because the system is less able to detect an attack in those locations most likely to be

attacked. Conversely, setting a common threshold of h = 2.433 to achieve a Pd = 0.333 results in

an almost six-fold increase in the expected number of false signals to 23.5 per period.

3.3 Discussion

In Examples #1 and #2 the thresholds were set assuming κ = 4 and γ = 2. Choosing κ is a matter

of resources and should be based on an organizational assessment of the average number of signals

that can be investigated per period. For a fixed number and type of sensors, one can improve the

system-wide probability of detection by increasing the expected number of false signals allowed.

As shown in Figure 4, however, there is a decreasing level of improvement in the probability of

detection for resources invested in adjudicating signals. Table 2 shows the trade-off in probability

of detection for the 200-cities example for four levels of γ and for five values of κ.

Choosing the value of γ over which to optimize is a subjective judgement based on the likely

magnitude of the mean increase that is important to detect. As shown in Table 2, once the choice

is made and the thresholds set, an outbreak manifested as a small value for γ (relative to the

standard deviation of the observations or residuals) will be harder to detect and will result in a

lower probability of detection. Conversely, an outbreak manifested as a larger γ will make it easier

to distinguish between F0 and F1 and thus will result in a higher the probability of detection.

That said, a relevant question is how sensitive the resulting probability of detection is to the mis-

specification of γ during the optimization. For example, what happens if the thresholds are chosen

using an optimization based on γ = 2 and then the actual outbreak manifests itself with γ = 1

or γ = 3? Table 3 shows the actual probabilities of detection that would occur for the 200-cities

example using the optimal thresholds determined for γ = 2. Comparing Table 3 to Table 2 we see
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Table 2: Optimal probabilities of detection in the 200-cities example for various values of γ and κ.

Pd κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
γ = 1 0.165 0.228 0.272 0.307 0.336
γ = 2 0.388 0.481 0.540 0.583 0.618
γ = 3 0.726 0.801 0.840 0.866 0.885
γ = 4 0.939 0.964 0.974 0.980 0.984

Table 3: Actual probabilities of detection in the 200-cities example when the system is optimized
for γ = 2 and the outbreak/attack results in F1 with γ as shown in the left column of the table.

Pd κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
Observed γ = 1 0.137 0.193 0.235 0.269 0.298
Observed γ = 2 0.388 0.481 0.540 0.583 0.618
Observed γ = 3 0.711 0.790 0.832 0.859 0.879
Observed γ = 4 0.925 0.955 0.968 0.976 0.981

that there is some degradation in Pd if the actual outbreak manifests at some γ other than the

value used to optimize the system, but the loss in detection probability is not large.

For biosurveillance system designers and operators, it is important to understand the interplay

between probability of detection and the expected number of false signals. In Figure 4 we have

already seen that, after a certain level, improving the probability of detection requires an increas-

ingly larger expected number of false signals. A similar result holds when one tries to decrease the

thresholds in order to achieve higher probabilities of detection. For example, Figure 7 demonstrates

how the probability of detection and expected number of false signals change when the optimal

thresholds from Example #1 are uniformly lowered by the percentages indicated on the horizontal

axis. In the plot, zero percent decrease corresponds to the probability of detection and expected

number of false signals for the optimal thresholds and a 100 percent decrease in thresholds gives

the probability of detection and expected number of false signals when all the thresholds are set to

0. What we see is that the expected number of false signals rises much faster than the probability

of detection for threshold decreases of more than 20 percent or so.

Similarly, if a system’s thresholds are not carefully set and controlled then it is possible for the

number of false signals to rapidly exceed the available resources to adjudicate them. To illustrate

this, we conducted a simple simulation in which the optimal thresholds from Example #1 were
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Figure 7: Changes in the probability of attack and expected number of false signals for Example
#1 when the optimal thresholds are uniformly decreased by some percentage as shown on the
horizontal axis.

randomly varied by a certain percentage. Figure 8 shows that when the thresholds are allowed

to randomly vary anywhere from five to 200 percent of their optimal values, the average system-

wide probability of detection is essentially unaffected. However, Figure 8 also shows that as the

fluctuation increases the expected number of false signals increases significantly. In fact, allowing

the optimal thresholds to vary randomly by 200 percent raises the average number of false signals

by nearly sixteen hundred percent, from four expected false signals to sixty-two. It thus behooves

biosurveillance system architects to both carefully design and control the system in order to manage

the number of false signals the system will generate.

Finally, we also explored how a biosurveillance system might perform if the thresholds were cal-

culated assuming the standardized residuals were normally distributed but the actual distribution

violated that assumption. In particular, using the 200-cities example we allowed the standardized

residuals to follow a t-distribution with various degrees of freedom and then compared system per-

formance with the thresholds appropriately optimized for the t-distribution to thresholds set using

Theorem 2 assuming the residuals were normally distributed.

Table 4 shows the results, where the expected number of false signals were constrained to one per

period (i.e., κ = 1) and we set γ = 2. The first column labeled “df” gives the degrees of freedom

for the t-distribution, which we varied from ∞ (i.e., a standard normal) to df=1. The next two
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Figure 8: Effect on the probability of detection and expected number of false signals in Example
#1 when individual thresholds are allowed to randomly vary from five percent to 200 percent.

columns give the system performance, in terms of Pd and κ, for the optimal thresholds calculated

for the correct t-distribution (where we used the Excel Solver, as described in Section 2.2.1). Here

we see, not surprisingly, that Pd decreases for decreasing degrees of freedom (and fixed κ), since

decreasing degrees of freedom corresponds to heavier tails and thus more variability.

In the last two columns of Table 4 we see how the system would perform if the thresholds were set

using the Theorem 2; i.e., incorrectly assuming the residuals followed a standard normal distribu-

tion. What is most interesting is that Pd changes very little while the observed average number

of false signals significantly increases as the distribution is increasingly misspecified. Compared

to the optimal Pds, using the incorrect thresholds results in higher Pds, the cost of which at the

most extreme (i.e., df=1) is a 22-fold increase in the average number of false signals over what was

desired.

Table 4 reinforces what we already observed in Figure 7: the false signal rate is much more sensitive

to the choice of thresholds than is the probability of detection. Said another way, biosurveillance

system designers and operators should be very cautious about how thresholds are chosen since small

changes that have minimal effect on detection performance can have large effects on the number
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Table 4: Performance of a system in the 200-cities example (with γ = 2 and κ = 1) when it is
optimized for residuals that follow a t-distribution with df degrees of freedom compared to its
performance when using thresholds calculated assuming the residuals follow a standard normal
distribution.

Results for Results for
Correct Thresholds Incorrect Thresholds
for t-distribution Based on Normal

df Pd κ Pd Observed κ

∞ 0.388 1.000 0.388 1.000
500 0.385 1.000 0.388 1.021
50 0.363 1.000 0.388 1.221
25 0.340 1.000 0.389 1.471
10 0.290 1.000 0.391 2.380
5 0.247 1.000 0.395 4.279
2 0.199 1.000 0.404 11.136
1 0.173 1.000 0.416 22.136

of false signals a system produces. In addition, for those using the EARS’ C1 and C2 algorithms

(including the W2 in BioSense), this example suggests caution in using the results of Theorem 2

to set thresholds. For these algorithms, because the denominator in the statistics is an estimator

for the residual standard deviation based on seven observations, the statistics being tracked may

be more likely to follow a t-distribution than a normal distribution.

For additional discussion, examples, and more detail on the application of this methodology to

biosurveillance, see Banschbach (2008).

4 Summary and Conclusions

In this paper we have described a framework for optimizing thresholds for a system of biosurveillance

or other threshold detection sensors. In so doing, we have made a number of assumptions about the

sensor system, including that we can appropriately model and remove any systematic effects in the

data from n sensors so that the resulting residuals are independent and that the sensor signals are

independent over time. We have also assumed identical distributions across all of the sensors and,

in most of our examples, that these are normal distributions with the event of interest manifesting

itself as an increase in the mean of the F0 distribution.
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The choice of the normal distribution was driven by previous work which showed that monitoring

the residuals from an adaptive regression could be an effective biosurveillance strategy, and it

is not unreasonable to assume such residuals follow (at least to a first approximation) a normal

distribution. However, the methodology described herein is not limited to this assumption, nor

does it require identical distributions for all of the sensors. What is required is that the probability

of exceeding a given threshold can be calculated for each sensor when no event being present (a

false signal) and when an event of interest is present (a true signal).

The assumption that sensor signals are independent over time simplified the optimization calcula-

tions and may or may not reflect real-world conditions for a given biosurveillance or other sensor

system. Our motivation was biosurveillance in which some of the algorithms currently in use are of

this type. However, there are other methods that use both current and historical information (such

as the CUSUM and EWMA quality control methods) for which additional research is required to

determine how to implement an equivalent approach. Certainly the idea is relevant—those methods

also use thresholds to reach a binary decision—but because the distribution at each time period

is conditional on the history up to that time period, no simple expressions for the percentiles and

probabilities exist.

In some sensor systems it may be by design to have multiple sensors in the same location all monitor-

ing for an event of interest in that region. In this situation, it is quite likely—even desirable—that

the sensors’ signals are correlated. In these systems, the signals from the various sensors are fed

into some sort of “fusion center” from which a single determination is made about whether an

event of interest has occurred in the region. In such systems, it would be inappropriate to use the

methodology described herein to develop thresholds for the individual sensors. Rather, if the fusion

center’s output is based on a threshold detection methodology of the combined sensor inputs, then

this methodology should be used to optimize the fusion center thresholds.

In terms of the biosurveillance problem, note that in a real surveillance system each hospital will be

monitoring m different syndromes simultaneously. Thus, if the total number of system wide false

signals that can be tolerated per period is κ, the thresholds for each syndrome must be optimized

subject to κ/m expected number of false signals. Of course, this assumes that it is equally important

to detect an anomaly in one syndrome as in any other syndrome. If this is not the case, it is also

possible to set the allowable expected number of false signals differentially by syndrome, where the

higher the number of false signals allowed, the more sensitive the overall system will be to detecting

a true outbreak of that particular syndrome.

26



We conclude by stressing that this methodology does not apply just to biosurveillance systems.

Systems of sensors have historically been used in military applications and today, with increasing

computing power and miniaturization, the uses of systems of sensors are proliferating well beyond

the military. Examples include such diverse applications as meteorology, supply chain management,

equipment and production monitoring, health care, production automation, traffic control, habitat

monitoring, and health surveillance. See, for example, Gehrke & Liu (2007), Xu (2007), Intel

(2007), Trigoni (2004), and Bonnet (2004). This methodology can potentially be applied to any

such application that uses threshold detection-based sensors.

This methodology also has promise in industrial quality control for optimizing Shewhart chart ap-

plications. Consider, for example, a factory with n production lines, each monitored by a single

Shewhart chart, where for whatever reason one of the lines is more likely to go “out of control”

compared to the others. Using standard practices, the factory would probably set the thresholds

equally on all the Shewhart charts. However, that would mean less-than-optimal factory perfor-

mance since ideally one would want to tune the control limits to be more sensitive to catching the

line more likely to go out-of-control. The methodology presented in this paper provides the means

for optimizing the thresholds. It would require a change in the way one thinks about the design of

control charts since the objective function and constraint are not in the usual terms of in-control

and out-of-control average run lengths. In addition, one would need to develop a methodology

for estimating the probability that each line goes out of control. However, these are subjects for

another paper.
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